Ch6.1 Image Classification을 위한 Neural Network(ResNet)
ResNet
- Residual 개념을 처음으로 고안한 Network이다. Neural Network가 깊어질수록 deep learning성능이 좋아질 것 같지만, 그렇지 않다. 따라서 이 문제를 해결하기 위해 Residual block을 도입하였다. residual block은 skip connection을 만들어준다.
위 방식을 통해 Gradient Vanishing(기울기 소멸)문제를 해결할 수 있다.
- Block은 convolution layer의 묶음 단위이다. 아래의 block하나를 residual block이라 하고, residual block을 여러개 쌓은 것을 ResNet이라고 한다.
위처럼 residual block을 여러개 쌓으면 parameter수가 매우 많아진다. 이 문제를 해결하기 위해 bottleneck block을 사용한다.
ResNet34는 기본 block을 사용하지만, ResNet50부터는 bottleneck block을 사용한다.
1x1 convolution을 사용하면 channel 수를 조절하며 dimension을 조절할 수 있다.
Identity mapping(skip connection)
실습코드(ResNet)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import matplotlib.pyplot as plt
import numpy as np
import copy
from collections import namedtuple #파이썬의 자료형 중 하나, tuple의 성질을 가지고 있지만, index뿐만 아니라 key값으로도 데이터에 접근할 수 있음
import os
import random
import time
import cv2
from torch.utils.data import DataLoader, Dataset
from PIL import Image
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
1
2
3
4
5
6
7
8
9
10
# nametuple 예시 코드
from collections import namedtuple
Student = namedtuple('Student', ['name','age','DOB']) #nametuple 정의
S = Student('홍길동', '19', '187') #값을 추가
print("The Student age using index is : ", end="")
print(S[1]) #인덱스를 이용한 데이터 접근
print("The Student name using keyname is : ", end="")
print(S.name) #키 값을 이용한 데이터 접근
1
2
The Student age using index is : 19
The Student name using keyname is : 홍길동
Image Pre-processing
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class ImageTransform():
def __init__(self,resize,mean,std): #__init__을 활용하여 Class object를 생성, 객체 생성시 자동으로 호출됨
self.data_transform={
'train': transforms.Compose([
transforms.RandomResizedCrop(resize,scale=(0.5,1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean,std),
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(resize),
transforms.ToTensor(),
transforms.Normalize(mean,std)
])
}
def __call__(self,img,phase): #Class object가 호출되면 실행된다.
return self.data_transform[phase](img)
1
2
3
4
5
#image preprocessing에 사용될 변수들
size = 224
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
batch_size = 32
Dataset Directory설정
1
2
from google.colab import drive
drive.mount('/content/drive')
1
Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
1
2
3
4
5
6
7
8
cat_directory=r'/content/drive/MyDrive/Pytorch_study/data/dogs-vs-cats/Cat/'
dog_directory=r'/content/drive/MyDrive/Pytorch_study/data/dogs-vs-cats/Dog/'
cat_images_filepaths=sorted(os.path.join(cat_directory,f) for f in os.listdir(cat_directory)) #lisdir은 directory내의 경로를 list로 반환
dog_images_filepaths=sorted(os.path.join(dog_directory,f) for f in os.listdir(dog_directory))
images_filepaths=[*cat_images_filepaths,*dog_images_filepaths] #list를 unpacking한다.
correct_images_filepaths=[i for i in images_filepaths if cv2.imread(i) is not None]
- train, validation, test set으로 dataset 분류
1
2
3
4
5
6
random.seed(42)
random.shuffle(correct_images_filepaths)
train_images_filepaths=correct_images_filepaths[:400]
val_images_filepaths=correct_images_filepaths[400:-10]
test_image_filepaths=correct_images_filepaths[-10:]
print(len(train_images_filepaths),len(val_images_filepaths),len(test_image_filepaths))
1
400 92 10
Dataset(image, label)
- Dataset은 전처리된 image와 label을 반환하고, DataLoader를 통해 iterable하게 바꿔준다.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class DogvsCatDataset(Dataset):
def __init__(self,file_list,transform=None,phase='train'):
self.file_list=file_list
self.transform=transform
self.phase=phase
def __len__(self):
return len(self.file_list)
def __getitem__(self,idx): #class object에서 index로 접근하면 자동으로 호출됨
img_path=self.file_list[idx]
img=Image.open(img_path) #PIL.open을 의미
img_transformed=self.transform(img,self.phase)
label=img_path.split('/')[-1].split('.')[0] #/content/drive/MyDrive/Pytorch_study/data/dogs-vs-cats/Cat/cat.0.jpg 형태로 경로가 되어 있음
if label=='dog':
label=1
elif label=='cat':
label=0
return img_transformed,label
1
2
3
4
5
6
7
#미리 정의된 ImageTransform클래스를 transform에 전달하고, Dataset의 상속을 받는 DogvsCatDataset을 통해 전처리와 labeling을 하여 반환
train_dataset=DogvsCatDataset(train_images_filepaths,transform=ImageTransform(size,mean,std),phase='train')
val_dataset=DogvsCatDataset(val_images_filepaths,transform=ImageTransform(size,mean,std),phase='val')
index=0
print(train_dataset.__getitem__(index)[0].size()) #getitem은 index로 접근하면 자동으로 호출된다. [0]은 image, [1]은 label이다.
print(train_dataset.__getitem__(index)[1])
1
2
torch.Size([3, 224, 224])
0
DataLoader
1
2
3
4
5
6
7
8
train_iterator=DataLoader(train_dataset,batch_size=batch_size,shuffle=True) #DataLoader는 iterable하게 만들어준다.
valid_iterator=DataLoader(val_dataset,batch_size=batch_size,shuffle=False)
dataloader_dict={'train':train_iterator,'val':valid_iterator} #DataLoader를 dictionary형태로 정의
batch_iterator=iter(train_iterator)
inputs,label=next(batch_iterator)
print(inputs.size())
print(label)
1
2
3
torch.Size([32, 3, 224, 224])
tensor([0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0,
0, 1, 1, 0, 1, 0, 1, 0])
Basic Block
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_channels, out_channels, stride = 1, downsample = False):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size = 3,
stride = stride, padding = 1, bias = False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size = 3,
stride = 1, padding = 1, bias = False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace = True)
if downsample:
conv = nn.Conv2d(in_channels, out_channels, kernel_size = 1,
stride = stride, bias = False)
bn = nn.BatchNorm2d(out_channels)
downsample = nn.Sequential(conv, bn)
else:
downsample = None
self.downsample = downsample
def forward(self, x):
i = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
if self.downsample is not None:
i = self.downsample(i)
x += i
x = self.relu(x)
return x
Bottleneck Block
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride = 1, downsample = False):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size = 1, stride = 1, bias = False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size = 3, stride = stride, padding = 1, bias = False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, self.expansion * out_channels, kernel_size = 1,
stride = 1, bias = False)
self.bn3 = nn.BatchNorm2d(self.expansion * out_channels)
self.relu = nn.ReLU(inplace = True)
if downsample:
conv = nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size = 1,
stride = stride, bias = False)
bn = nn.BatchNorm2d(self.expansion * out_channels)
downsample = nn.Sequential(conv, bn)
else:
downsample = None
self.downsample = downsample
def forward(self, x):
i = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
if self.downsample is not None:
i = self.downsample(i)
x += i
x = self.relu(x)
return x
ResNet Model Network
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
class ResNet(nn.Module):
def __init__(self, config, output_dim, zero_init_residual=False):
super().__init__()
block, n_blocks, channels = config
self.in_channels = channels[0]
assert len(n_blocks) == len(channels) == 4
self.conv1 = nn.Conv2d(3, self.in_channels, kernel_size = 7, stride = 2, padding = 3, bias = False)
self.bn1 = nn.BatchNorm2d(self.in_channels)
self.relu = nn.ReLU(inplace = True)
self.maxpool = nn.MaxPool2d(kernel_size = 3, stride = 2, padding = 1)
self.layer1 = self.get_resnet_layer(block, n_blocks[0], channels[0])
self.layer2 = self.get_resnet_layer(block, n_blocks[1], channels[1], stride = 2)
self.layer3 = self.get_resnet_layer(block, n_blocks[2], channels[2], stride = 2)
self.layer4 = self.get_resnet_layer(block, n_blocks[3], channels[3], stride = 2)
self.avgpool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(self.in_channels, output_dim)
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def get_resnet_layer(self, block, n_blocks, channels, stride = 1):
layers = []
if self.in_channels != block.expansion * channels:
downsample = True
else:
downsample = False
layers.append(block(self.in_channels, channels, stride, downsample))
for i in range(1, n_blocks):
layers.append(block(block.expansion * channels, channels))
self.in_channels = block.expansion * channels
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
h = x.view(x.shape[0], -1)
x = self.fc(h)
return x, h
- ResNetConfig
1
ResNetConfig = namedtuple('ResNetConfig', ['block', 'n_blocks', 'channels'])
1
2
3
4
5
6
7
resnet18_config = ResNetConfig(block=BasicBlock,
n_blocks=[2,2,2,2],
channels=[64,128,256,512])
resnet34_config = ResNetConfig(block=BasicBlock,
n_blocks=[3,4,6,3],
channels=[64,128,256,512])
1
2
3
4
5
6
7
8
9
10
11
resnet50_config = ResNetConfig(block=Bottleneck,
n_blocks=[3,4,6,3],
channels=[64,128,256,512])
resnet101_config = ResNetConfig(block=Bottleneck,
n_blocks=[3,4,23,3],
channels=[64,128,256,512])
resnet152_config = ResNetConfig(block=Bottleneck,
n_blocks=[3,8,36,3],
channels=[64,128,256,512])
- pre-trained model 사용법
1
pretrained_model=models.resnet50(pretrained=True)
1
2
3
4
5
6
/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.
warnings.warn(
/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet50_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet50_Weights.DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)
Downloading: "https://download.pytorch.org/models/resnet50-0676ba61.pth" to /root/.cache/torch/hub/checkpoints/resnet50-0676ba61.pth
100%|██████████| 97.8M/97.8M [00:00<00:00, 155MB/s]
1
print(pretrained_model)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=1000, bias=True)
)
ResNet50 config
1
2
3
OUTPUT_DIM = 2 #class 2개(Cat, Dog)
model = ResNet(resnet50_config, OUTPUT_DIM)
print(model)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=2, bias=True)
)
Optimizer & Loss Function
1
2
3
4
5
optimizer=optim.Adam(model.parameters(),lr=1e-7)
criterion=nn.CrossEntropyLoss()
model=model.to(device)
criterion=criterion.to(device)
Model Evaluation
모델 평가 함수 정의
correct=top_pred.eq(y.view(1,-1).expand_as(top_pred)): eq는 tensor를 비교하는 함수로, torch.eq는 서로 같은지 비교, torch.ne는 서로 다른지 비교, torch.ge는 크거나 같은지를 비교할 때 사용한다.
1
2
3
# torch.eq 예시 코드
# torch.eq(비교 대상 텐서, 비교할 텐서)
torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
1
2
tensor([[ True, False],
[False, True]])
- expand & expand_as
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#expand 예제 코드
import torch
x = torch.tensor([1, 2, 3, 4]) # size = 4
# (A, B, C, ... , 4) 형태로 마지막 axis size만 4이면 확장 가능
x.expand(3, 4)
'''
tensor([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])'''
x.expand(2, 2, 4)
'''
tensor([[[1, 2, 3, 4],
[1, 2, 3, 4]],
[[1, 2, 3, 4],
[1, 2, 3, 4]]])'''
x.expand(1, 2, 1, 4)
'''
tensor([[[[1, 2, 3, 4]],
[[1, 2, 3, 4]]]])'''
#x.expand(1, 2, 8) # last axis size = 4가 아니라서 오류
# RuntimeError: The expanded size of the tensor (3) must match the existing size (4) at non-singleton dimension 2. Target sizes: [1, 2, 3]. Tensor sizes: [4]
1
'\ntensor([[[[1, 2, 3, 4]],\n\n [[1, 2, 3, 4]]]])'
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# expand_as는 입력으로 tensor의 크기가 아닌, tensor가 직접 들어간다(input tensor와 동일한 형태로 출력)
x = torch.tensor([1, 2, 3, 4])
y = torch.ones(3, 4)
x.expand_as(y)
'''
tensor([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])'''
z = torch.ones(2, 2, 4)
x.expand_as(z)
'''
tensor([[[1, 2, 3, 4],
[1, 2, 3, 4]],
[[1, 2, 3, 4],
[1, 2, 3, 4]]])'''
1
'\ntensor([[[1, 2, 3, 4],\n [1, 2, 3, 4]],\n\n [[1, 2, 3, 4],\n [1, 2, 3, 4]]])'
1
2
3
4
5
6
7
8
9
10
11
def calculate_topk_accuracy(y_pred,y,k=2):
with torch.no_grad():
batch_size=y.shape[0] #y행의 갯수가 batch size와 같다.
_,top_pred=y_pred.topk(k,1) #argmax과 유사, argmax는 index만 반환한다면, topk는 그 값과 index를 모두 반환
top_pred=top_pred.t() # transpose(전치)를 의미 ex) 2x3 -> 3x2
correct=top_pred.eq(y.view(1,-1).expand_as(top_pred)) #y는 실제 label, top_pred는 예측된 결과
correct_1=correct[:1].reshape(-1).float().sum(0,keepdim=True)
correct_k=correct[:k].reshape(-1).float().sum(0,keepdim=True)
acc_1=correct_1/batch_size
acc_k=correct_k/batch_size
return acc_1,acc_k
Train & Evaluation Function
- train function
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
def train(model,iterator,optimizer,criterion,device):
epoch_loss=0
epoch_acc_1=0
epoch_acc_5=0
model.train()
for (x,y) in iterator:
x=x.to(device)
y=y.to(device)
optimizer.zero_grad()
y_pred=model(x)
loss=criterion(y_pred[0],y)
acc_1,acc_5=calculate_topk_accuracy(y_pred[0],y)
loss.backward()
optimizer.step()
epoch_loss+=loss.item()
epoch_acc_1+=acc_1.item()
epoch_acc_5+=acc_5.item()
epoch_loss/=len(iterator)
epoch_acc_1/=len(iterator)
epoch_acc_5/=len(iterator)
return epoch_loss,epoch_acc_1,epoch_acc_5
- evaluation function
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
def evaluate(model, iterator, criterion, device):
epoch_loss = 0
epoch_acc_1 = 0
epoch_acc_5 = 0
model.eval()
with torch.no_grad():
for (x, y) in iterator:
x = x.to(device)
y = y.to(device)
y_pred = model(x)
loss = criterion(y_pred[0], y)
acc_1, acc_5 = calculate_topk_accuracy(y_pred[0], y)
epoch_loss += loss.item()
epoch_acc_1 += acc_1.item()
epoch_acc_5 += acc_5.item()
epoch_loss /= len(iterator)
epoch_acc_1 /= len(iterator)
epoch_acc_5 /= len(iterator)
return epoch_loss, epoch_acc_1, epoch_acc_5
- time function
1
2
3
4
5
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time/60)
elapsed_secs = int(elapsed_time-(elapsed_mins*60))
return elapsed_mins, elapsed_secs
Model Training
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
best_valid_loss = float('inf')
EPOCHS = 10
for epoch in range(EPOCHS):
start_time = time.monotonic()
train_loss, train_acc_1, train_acc_5 = train(model, train_iterator, optimizer, criterion, device)
valid_loss, valid_acc_1, valid_acc_5 = evaluate(model, valid_iterator, criterion, device)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), '/content/drive/MyDrive/Pytorch_study/ResNet-model.pt')
end_time = time.monotonic()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc @1: {train_acc_1*100:6.2f}% | ' \
f'Train Acc @5: {train_acc_5*100:6.2f}%')
print(f'\tValid Loss: {valid_loss:.3f} | Valid Acc @1: {valid_acc_1*100:6.2f}% | ' \
f'Valid Acc @5: {valid_acc_5*100:6.2f}%')
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
Epoch: 01 | Epoch Time: 0m 6s
Train Loss: 0.722 | Train Acc @1: 50.48% | Train Acc @5: 100.00%
Valid Loss: 0.709 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 02 | Epoch Time: 0m 6s
Train Loss: 0.728 | Train Acc @1: 49.76% | Train Acc @5: 100.00%
Valid Loss: 0.712 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 03 | Epoch Time: 0m 6s
Train Loss: 0.720 | Train Acc @1: 50.24% | Train Acc @5: 100.00%
Valid Loss: 0.707 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 04 | Epoch Time: 0m 7s
Train Loss: 0.719 | Train Acc @1: 49.76% | Train Acc @5: 100.00%
Valid Loss: 0.706 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 05 | Epoch Time: 0m 6s
Train Loss: 0.711 | Train Acc @1: 50.24% | Train Acc @5: 100.00%
Valid Loss: 0.710 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 06 | Epoch Time: 0m 8s
Train Loss: 0.713 | Train Acc @1: 50.48% | Train Acc @5: 100.00%
Valid Loss: 0.703 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 07 | Epoch Time: 0m 6s
Train Loss: 0.713 | Train Acc @1: 50.24% | Train Acc @5: 100.00%
Valid Loss: 0.705 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 08 | Epoch Time: 0m 7s
Train Loss: 0.701 | Train Acc @1: 50.24% | Train Acc @5: 100.00%
Valid Loss: 0.708 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 09 | Epoch Time: 0m 6s
Train Loss: 0.711 | Train Acc @1: 49.76% | Train Acc @5: 100.00%
Valid Loss: 0.708 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Epoch: 10 | Epoch Time: 0m 6s
Train Loss: 0.709 | Train Acc @1: 50.00% | Train Acc @5: 100.00%
Valid Loss: 0.704 | Valid Acc @1: 51.19% | Valid Acc @5: 100.00%
Test
model.eval()과 torch.no_grad()의 차이
- model.eval(): 모든 layer가 evaluation mode에 들어가도록 해준다. 이때, training시에만 필요한 Dropout, Batchnorm 등의 기능을 비활성화시켜주는 것이다.(메모리와 관련 x)
- torch.no_grad(): gradient계산을 비활성화해준다. Pytorch에는 autograd를 자동으로 해주는 engine이 활성화되어있는데, 이를 비활성화시켜주는 것이다. 따라서 필요 메모리가 줄어들고 연산속도가 늘어난다.
PIL.Image.open과 cv2.imread의 차이
PIL.Image.open: WxH형태로 image를 불러오고, 각 채널에 대한 접근을 getpixel()과 같은 method로 해야한다. 또한 channel은 RGB의 순서를 가지고 있다.
cv2.imread(): HxWxC의 형태로 image를 불러오고, channel은 BGR의 순서를 갖는다.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import pandas as pd
id_list=[]
pred_list=[]
_id=0
with torch.no_grad(): #autograd 비활성화
for test_path in test_image_filepaths:
img=Image.open(test_path)
_id=test_path.split('/')[-1].split('.')[1] #file경로에서 label추출
transform=ImageTransform(size,mean,std)
img=transform(img ,phase='val') #'val' phase로 preprocessing
img=img.unsqueeze(0) #0번째에 차원 증가, BxCxHxW형태가 된다.(전치리과정에서 ToTensor로 WxW->CxHxW)
img=img.to(device)
model.eval()
outputs=model(img)
preds=F.softmax(outputs[0],dim=1)[:,1].tolist()
id_list.append(_id)
pred_list.append(preds[0])
res=pd.DataFrame({ #새로운 dataframe생성(id열과 label열)
'id':id_list,
'label':pred_list
})
res.sort_values(by='id',inplace=True) #id열을 기준으로 정렬
res.reset_index(drop=True,inplace=True)#idex재설정
res.to_csv('/content/drive/MyDrive/Pytorch_study/ResNet.csv',index=False)
res.head(10)
id | label | |
---|---|---|
0 | 109 | 0.685781 |
1 | 145 | 0.609090 |
2 | 15 | 0.646796 |
3 | 162 | 0.624924 |
4 | 167 | 0.586582 |
5 | 200 | 0.636871 |
6 | 210 | 0.651499 |
7 | 211 | 0.617370 |
8 | 213 | 0.589127 |
9 | 224 | 0.593606 |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class_ = classes = {0:'cat', 1:'dog'}
def display_image_grid(images_filepaths, predicted_labels=(), cols=5):
rows = len(images_filepaths) // cols
figure, ax = plt.subplots(nrows=rows, ncols=cols, figsize=(12, 6))
for i, image_filepath in enumerate(images_filepaths):
image = cv2.imread(image_filepath)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
a = random.choice(res['id'].values)
label = res.loc[res['id'] == a, 'label'].values[0]
if label > 0.5:
label = 1
else:
label = 0
ax.ravel()[i].imshow(image)
ax.ravel()[i].set_title(class_[label])
ax.ravel()[i].set_axis_off()
plt.tight_layout()
plt.show()
display_image_grid(test_image_filepaths)
This post is licensed under CC BY 4.0 by the author.